RARE-EARTH DOPED NANOPARTICLES AS SHORTWAVE INFRARED REPORTERS

Dominik Naczynski, Ph.D.
Postdoctoral Fellow
Radiation Oncology

April 17, 2014

Medical Imaging in Oncology

- Anatomical imaging provides macroscopic biological information
 - Where and how large is a tumor?
 - Can treatment be initiated?
- Functional imaging detects changes in physiology
 - Has angiogenesis occurred?
 - What is the degree of hypoxia?
- Several modalities well-suited
 - Ultrasound
 - X-ray computed tomography (CT)
 - Magnetic resonance imaging (MRI)

Medical Imaging in Oncology

Image: Lambin, P., et al. European Journal of Cancer 48, 441-446 (2012).

- Molecular imaging visualizes processes at the microscopic level
 - How far has cancer progressed?
 - Has micro-metastasis occurred?
 - Is there response to treatment?
 - Can treatment be personalized?
- Capable modalities
 - MRI
 - Nuclear (PET/SPECT)
 - Optical imaging

Medical Imaging in Oncology

Image: Lambin, P., et al. European Journal of Cancer 48, 441-446 (2012).

- Molecular imaging visualizes processes at the microscopic level
 - How far has cancer progressed?
 - Has micro-metastasis occurred?
 - Is there response to treatment?
 - Can treatment be personalized?
- Capable modalities
 - MRI
 - Nuclear (PET/SPECT)
 - **Optical imaging**

Optical Imaging: An Emerging Field

₩ Ş

- Non-invasive imaging technique
 - No harmful ionizing radiation
 - Portable and inexpensive
 - Easily translatable into the clinic
- Driven by the development of detectors and contrast agents¹
 - Cameras (EMCCD, ICCD, InGaAs)
 - Exogenous contrast agents

Intraoperative Use of Optical Imaging

Image: van Dam, et al. Nat Medicine 17, 1315 (2011)

Classes of Contrast Agents

¹Pierce, et al., Intern J of Cancer 123,1979 (2008)

Development of optical contrast agents for deep tissue cancer imaging, surgical guidance and molecular classification of disease at its earliest stages

- Contrast agent design requirements¹
 - Biocompatible (non-toxic, biologically stable)
 - Sensitive and specific (detectable at low conc., targetable)
 - Resolvable deep in living tissue

Development of optical contrast agents for deep tissue cancer imaging, surgical guidance and molecular classification of disease at its earliest stages

- 1. Principles of optical imaging
 - Interaction of light with tissue
 - Challenges of imaging using light
- 2. Recent advancements in biomedical optical imaging
 - Beyond the near infrared
 - Old probes with new potential

Development of optical contrast agents for deep tissue cancer imaging, surgical guidance and molecular classification of disease at its earliest stages

1. Principles of optical imaging

- Interaction of light with tissue
- Challenges of imaging using light
- 2. Recent advancements in biomedical optical imaging
 - Beyond the near infrared
 - Old probes with new potential

Photon Interactions in Tissue

Light Interaction with Tissue

¹ Bremer, et al. European Radiology. (2003) 13, 231

- Optical imaging is governed by the interaction of light with tissue¹
 - Absorption attenuates signal
 - Scattering diffuses signal

 Both absorption and scattering limit how deeply we can image²

² Lim, Y.T. et al. Mol Imaging. (2003) 2, 50.

Photon Absorption in Tissue

- Tissue chromophores absorb light
 - Water
 - Hemoglobin/proteins
 - Melanin (in pigmented tissue)
- Near infrared (NIR, 700-1000 nm) is not absorbed by biological chromophores¹
 - Low tissue auto-fluorescence
 - Improved penetration depth (cm)
 - "Biological window" for imaging

Image from Frangioni, Cur. Opin. in Chem. Bio. 2003, 7, 626.

"Biological Window" for Imaging

Photon Scattering in Tissue

- Scattering is the most dominate lighttissue interaction in NIR
- Tissue components and heterogeneity cause light scattering
 - Non-uniform distribution of refractive indices
 - Wavelength dependence tissue specific
- Contribution of absorption and scattering must be considered

New Window: Shortwave Infrared (SWIR)

- "Second biological window"
 - Spanning 1,000 3,000 nm
 - Comparable absorption properties as NIR

New Window: Shortwave Infrared (SWIR)

- "Second biological window"
 - Spanning 1,000 3,000 nm
 - Comparable absorption properties as NIR
- SWIR exhibits reduced scattering
- Improved resolution and depth
 - Simulated 100x improved S/N in tissue¹

Top image adapted from Smith, et al. Nat Nanotech. 2009, 4, 710.

13 of 30

¹ Lim, Y.T. et al. *Mol Imaging.* (2003) 2, 50.

Challenges of SWIR-Based Imaging

- Few materials have biologically applicable SWIR contrast
 - Carbon nanotubes (SWNTs) have broad emission/sizes¹
 - Quantum dots (QDs) exhibit contain toxic elements²
- Lack of commercially available imaging systems
 - Common systems have limited imaging capabilities beyond 850 nm

Carbon Nanotubes Lack Optical Tunability

Images From Zhan, et al. Nature Materials 2, 38 (2003) & 1 Welsher K et al. PNAS 108, 8943 (2011)

²Lim, et al. Molecular Imaging 2, 50 (2003)

Development of optical contrast agents for deep tissue cancer imaging, surgical guidance and molecular classification of disease at its earliest stages

- 1. Principles of optical imaging
 - Interaction of light with tissue
 - Challenges of imaging using light
- 2. Recent advancements in biomedical optical imaging
 - Beyond the near infrared
 - Old probes with new potential

Rare-Earth Doped Nanoparticles (REs)

- Nanoparticles doped with Yb and rare earths
 - Doped "host" surrounded by an undoped "shell"
 - Numerous hosts available, NaYF₄ very efficient¹
- Unique physical and optical characteristics
 - Low toxicity
 - Stable optical properties (non-bleaching)
 - Excited with NIR ("biological window")
 - Tunable emissions in visible (upconversion)
 - Exhibit bright, tunable SWIR emissions²

Structure & Visible Emission

Tunable SWIR Emission

¹ Tan, MC, et. al The Journal of Physical Chemistry C (2011)

² Naczynski, D. J., et al. Nature communications (2013)

Developing REs for SWIR Imaging

- RE are as efficient as QDs and significantly more efficient as SWNTS at generating SWIR
 - Brighter than organic IR dyes (e.g. IR-26)
- Numerous benefits over SWNTs and QDs for biomedical SWIR imaging
 - Excitation in first window (NIR), large Stokes shift
 - Excitation with low power densities
 - Narrow and tunable emissions, multiplex capability
 - Emissions are not size dependent

Naczynski, D. J., et al. Nature communications (2013)

Designing a SWIR Imaging Prototype

¥ ₽

- Preclinical translation requires the development of an imaging platform
- Developed of a low-cost (<\$100k) small animal system
 - InGaAs camera
 - NIR laser
 - Interchangeable emission filters
 - SWIR lens/objective
 - Anesthesia unit/heating system

Operating features

- Fast exposure, video rate imaging (20-50 ms)
- Low power excitation (>100 mW/cm²)
- Excellent detection sensitivity (3 nM for REs)

SWIR Imaging Prototype

48°

Developing REs for Biological Use

¹D. J. Naczynski, et al. Small (2010)

REs encapsulated in human serum albumin¹

REs stabilized using PEG [poly(ethylene glycol)]

Developing REs for Biological Use

Albumin encapsulation

- Tunable sizes (75-300 nm)
- Increased biocompatibility
- Drug binding regions¹
- Clinical precedent (Abraxane)

PEGylation

- Simple procedure
- Small size achievable (30-50 nm)
- Increased biocompatibility
- Improved serum half-time

Real-Time Tissue SWIR Imaging

- REs injected via tail vein catheter in healthy mouse
 - Video-rate image acquisition over 60 s
- Circulation of REs could be visualized in real time
 - Transport to heart and lungs
 - SWIR emissions could distinguish individual organ structures
 - Tissue distribution was rapidly assessed non-invasively

Vascular SWIR Imaging

- REs injected into mice bearing melanoma xenografts
 - Tumor regions surgically exposed following injection
- SWIR reveals vessel patterns in tumor xenograft model
 - Vasculature architecture visualized
 - Irregular patterns near tumor
 - Individual vessels observed after dissection.

Multispectral SWIR Imaging

- Two "color" multispectral SWIR imaging after intra-tumoral injection
 - Injected REs doped with Er (em: 1525 nm) and Ho (em: 1185 nm)
- First demonstration of multispectral in vivo SWIR imaging
 - Single source excitation identified both signals with no crosstalk
 - Tunable SWIR emissions can be use to probe multiple disease markers

- Transgenic murine melanoma model (TGS)¹
 - Spontaneous tumor development
 - Mimics human cutaneous melanoma
 - Highly metastatic
 - Pigmented lesions
- Angiogenesis in larger lesions
 - Relevant to other aggressive cancers

SKH (left) & TGS Mice (right)

Angiogenesis in TGS Tumor

- Very low autofluorescence observed before imaging
 - Backlit images resolved with incandescent lighting

- Tumors imaged over time after injection of RE formulations
- Negligible fluorescence observed in non-targeted formulations

Proposed Mechanism of Targeting

- Enhanced SWIR signal at tumor sites with targeted REs
- Only SWIR emissions observed
 - Easily detectable through dense, pigmented tumors

- Peak emission observed and validated at 24 h
 - Over a 10-fold increase in tumor accumulation over non-targeted

Future Directions

- Biomarker imaging using multiplexed SWIR
 - Monitoring disease response after treatment
 - Visualizing the interplay between multiple cancer indicators
- Extension of SWIR imaging toward deeper tissue and intraoperative imaging
 - Fluorescence endoscopy
 - Lymph node mapping/biopsy guidance
 - In situ histopathology

Molecular Targeting Disease Markers

Non-targeted

Targeted

D. J. Naczynski, et al. Small (2010)

Acknowledgements

Stanford University

- Dr. Lei Xing
- Dr. Conroy Sun
- Dr. Guillem Pratx
- Dr. Silvan Tuerkcan
- Dr. Olga Volotskova
- Cesare Jenkins

Rutgers University

- Dr. Prabhas Moghe (Biomedical Eng.)
- Dr. Richard Riman (Materials Science)
- Dr. Suzie Chen (Cancer Biology)
- Dr. Charles Roth (Chemical Eng.)

Princeton Instruments

- Alan Lichty
- Rob Allen
- Austin Cyphersmith
- Scott Young

Funding sources

Stanford – Spectrum Accelerator Seed Grant (PI: Naczynski), NIH Grant (R01 CA133474 04, PI: Xing)

Rutgers – UMDNJ Biotechnology Training Program (NIH T32-EB005583), NSF NIRT Grant (#0609000, PI: P. Moghe), NIH Grant (2R01-EB008278, PI: C. Roth)