

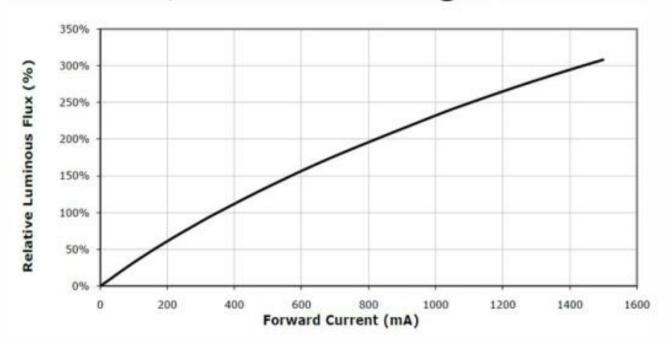
Maury Wright Editor-in-Chief LEDs Magazine

# An Overview of LED Drivers: AC/DC & Dimming

Ron Lenk ron.lenk@reliabulb.com

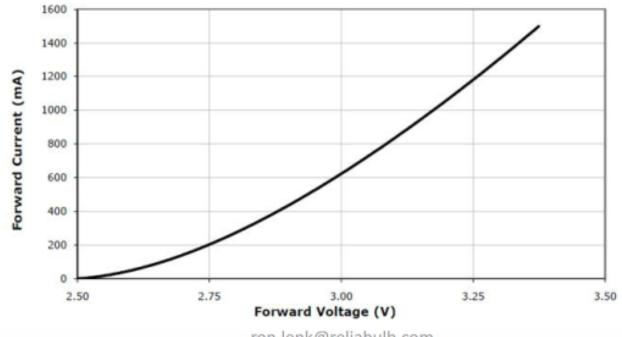


Ron Lenk Consultant LED Industry


## Today's Agenda

- LEDs
  - Overview of their characteristics.
- Power Sources
  - Introduction to the AC power line.
- SMPS
  - Many of the issues involved with design of off-line drivers.
- Dimming
  - Why your light should dim, and how.

## **LEDS**


## **LED Characteristics**

- LED stands for Light Emitting Diode.
- Like other diodes, their performance is set by their current, not their voltage.



#### LED Characteristics

- Once you know the current, that determines the voltage.
- Thus you need a current source, not a voltage source, to drive the LEDs.



## LED are Complicated Systems!

- Technical details:
  - Raising the die temperature decreases the light output for a given current.
  - Raising the die temperature decreases the forward voltage of the LED.
  - And the die temperature depends on the power dissipation, which is the current x voltage.
- We usually build complicated Spice models, including temperature effects and optical output.

## **LED Strings**

- Putting LEDs in parallel can be a problem.
  - Very high currents at low voltages, lots of loss.
  - Currents don't share well.
- Series is better.
- In practice, strings of LEDs are put in parallel.
  - Long strings have less variation in voltage, and thus better output matching.
  - String length may be limited by maximum voltage or reliability.

#### **AC LINE POWER**

#### **Power Sources**

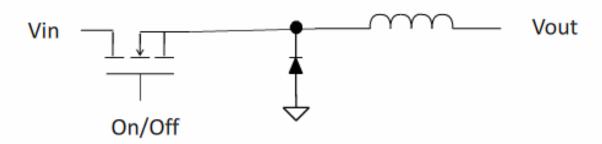
- In addition to the familiar 120VAC and 240VAC, the US also has 277VAC.
  - "Universal Input" has a different meaning than for power supplies.
- Another difference from standard power supplies is that not all power sources for lighting are 3-wire---the light bulb in your ceiling is only 2-wire.
  - Affects EMI and lightning.

#### **Power Sources**

- +10% isn't good enough! What should your light do at 85VAC? Or 175VAC?
  - Shouldn't burn up!
  - Maintain constant light, or dim? Dim linearly?
  - Turn off between 132VAC and 250VAC?
- Should your light have a disconnect if it is designed for 3-wire, but only 2-wire is attached?

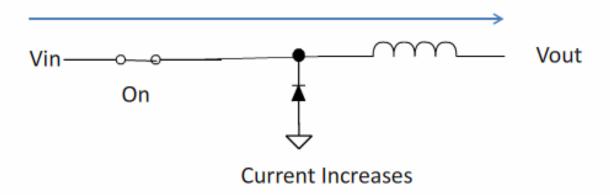
## Lightning

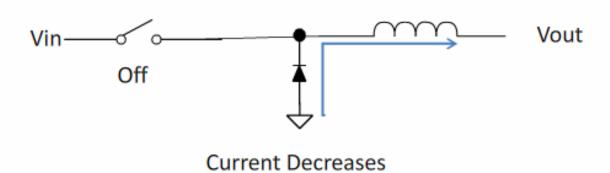
- Power lines have very high voltage surges from lightning.
  - Class 'A' is a 100KHz ring going to 2-4KV at 500A.
  - Class 'B' is a spike going to 6KV at 3000A.
- Class 'A' lightning protection is suitable for home use...commercial needs Class 'B'.
  - And there's a Class C for outdoors!
- Just sticking an MOV across the line may not be enough....



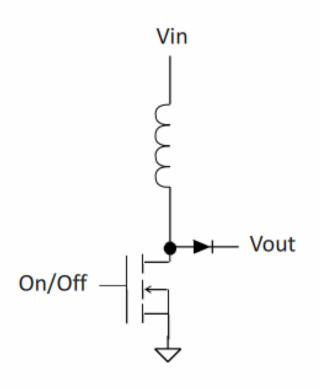

## **SMPS**

#### **SMPS**


- Most off-line power supplies these days are Switch-Mode Power Supplies.
  - High efficiency.
  - Wide input and output ranges of both current and voltage.
  - BUT can involve complex engineering decisions.
  - And can be costly.
- Two most basic topologies: buck and boost.

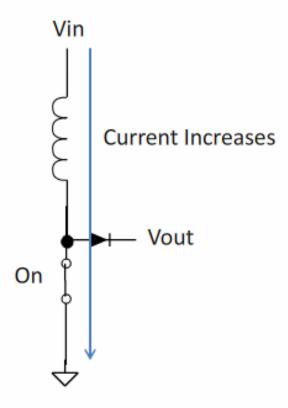

#### Buck

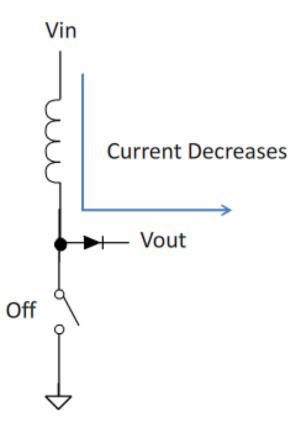



- Buck can only produce output voltage lower than input.
- MOSFET and diode must be rated to take highest input voltage.
- Inductor must be rated to take highest output current.

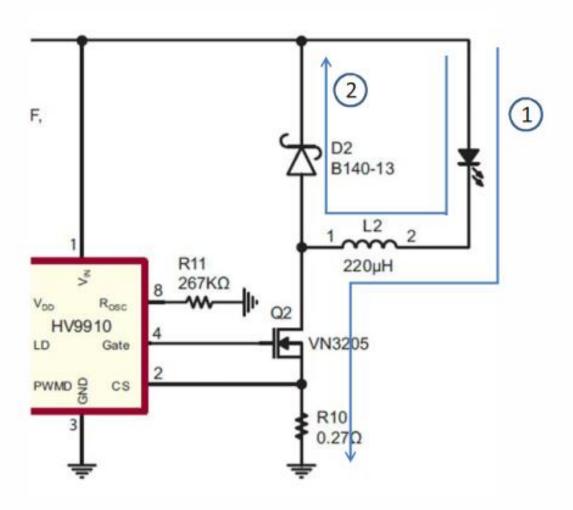
## Buck



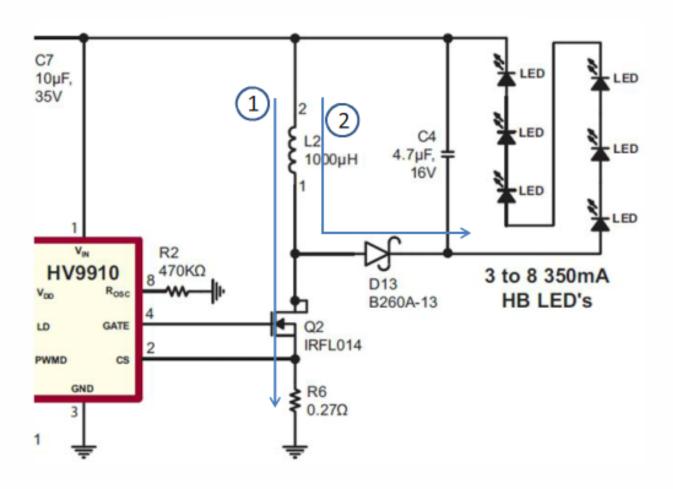




#### **Boost**



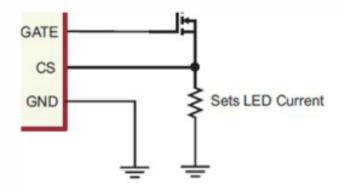

- Boost can only produce output voltage higher than input.
- MOSFET must be rated to take highest input voltage.
- Diode must be rated to take output voltage.
- Inductor must be rated to take highest output current.

## Boost

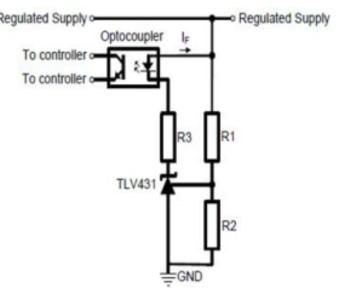





## **Buck Example**




## **Boost Example**




#### Feedback

 For non-isolated drivers, feedback is straightforward. The peak current is set by the feedback voltage of the IC divided by a resistor value.



- Isolated feedback is much more complicated. Typical construction involves a 431 error amplifier + an optocoupler.
  - Optocouplers age faster than any other component in a driver, and so must be very carefully specified and shielded from high temperature.



#### **COMPONENTS AND PARAMETERS**

## Switching Frequency

- "Switching frequency" is how often the transistor turns on and off per second.
- Higher switching frequency generally translates to smaller inductors = lower cost for low volume production.
- BUT higher switching frequency makes passing EMI harder, and may translate to larger filters = higher cost.
- Good compromise = ~100-300KHz.

## Selecting an IC

- Choose an IC specifically designed for driving LEDs. Some of the things to look for:
  - Should control current, not voltage.
  - Should have a very low feedback voltage, say 100mV.
  - High voltage IC convenient, otherwise need startup circuit.
  - High gate drive current only for high power units;
    may make EMI unnecessarily hard!

#### MOSFET vs. IGBT

- Almost all LED circuits use MOSFETs. They are available in 600V (for 120VAC) to 1000V (for 277VAC), and a huge range of resistance.
- But, as power / voltage gets higher than ~500W, it pays to consider IGBTs, which are available in even higher voltages.
- Note: For very low power levels, bipolar transistors can sometimes be the cheapest alternative.

## Capacitors!

- There have been a LOT of bad LED driver designs because of misuse of electrolytic capacitors.
- Proper use requires attention to
  - Ripple current rating;
  - Lifetime at temperature rating.
- Lifetime increases x2 for each 10° drop.
  - Example: 5000 hrs. at  $105^{\circ}$ C → 20,000 hrs. at  $85^{\circ}$ C.

#### OTHER CONSIDERATIONS

#### Isolated or Not?

- Essentially all off-line power supplies (for things other than LEDs) are isolated, so users can't be electrocuted (UL, VDE).
- BUT...there are other choices...if the output can't be accessed, isolation is not needed.
  - Many manufacturers are doing non-isolated these days because it's cheaper.
  - Have to work very closely with mechanical engineering.
  - Getting UL involved from the beginning is a very good idea.

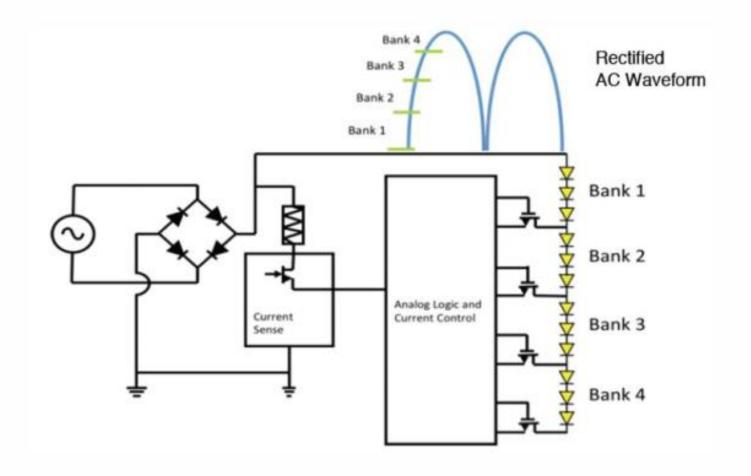
## **Power Dissipation**

- Even though drivers are efficient, they still dissipate significant power.
  - Example: 2000 Lm lamp, at 100 LPW needs 20W.
    At 85% efficiency, the driver dissipates 3.5W.
  - Much of this power is in the MOSFET, diode and inductor...relatively small components.
- May need significant heatsinking for the driver.
  - Or thermal isolation from the LEDs.

#### ×

PEAK

EN 55022 CLASS B Red at ed (3re GLORBYTE POWERLINE HOREZONTAL POLAR SATION


#### EMI

- Government dictates how much electrical noise your LED driver can put out.
  - Class A for residential, Class B for commercial---not really that much difference practically.
  - Conducted noise can be suppressed with filters...but not making the noise in the first place, using a careful design, is better.
  - Radiated noise depends on careful component placement on the PCB.
- Don't expect to pass the first time.
  Passing EMI can frequently be faster by getting advice from an expert!

#### "AC LEDs"

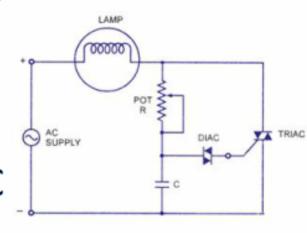
- Connect a string of LEDs directly to the output of a bridge.
  - No SMPS cost.
- Common problems:
  - Current goes up exponentially with voltage, high peak currents.
  - Line frequency ripple.
  - Lightning!
- Takes very careful design to make a survivable product.

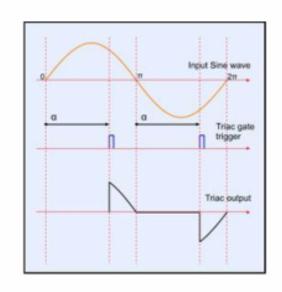
## "AC LEDs"



## **DIMMING**

## Why Dim?


- About 150 million dimmers in US---but this is only 10% of total sockets. Maybe just ignore them?
- All incandescents dim. Np dimming is one of the major frustrations with CFLs.
- People don't have to pay extra to get an incandescent that dims. Therefore, all LED lights should dim, and must have zero pricedifference.


## **Incandescent Dimming**

- Human eyes are non-linear. Fortunately, so are incandescents. An incandescent bulb at halfpower is noticeably dimmer than at full power.
  - The few present-day LED bulbs that dim tend to be linear---they look like "bright, bright, bright, full dim".
- Incandescents change CCT as they dim, from 2800°K down to ~1800°K.
  - The market is just beginning to think about practical ways to do this with LEDs.

## **Triac Dimming**

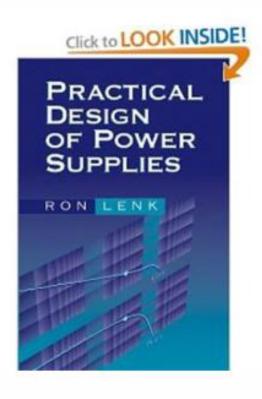
- Most dimming circuits use triacs.
- Chop off beginning or end of AC line.
- Require minimum current to keep triac on. Problem for LED bulbs!
- Several sophisticated ICs--expensive.

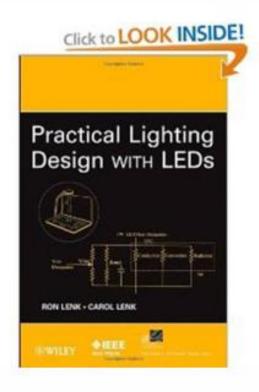




## 0-10V Dimming

- Some dimming is done with 0-10V (0V off, 10V full brightness).
- Unfortunately, some are 1-10V!
- Easy for LED drivers with an IC that has a linear dimming pin.
- BUT...harder if the 0-10V signal has to be isolated from the AC line.


## PWM vs. Analog Dimming


- Analog dimming seems natural. Decreased current = decreased light.
- PWM dimming turns them on and off at full current.
  - Many ICs support this because LEDs tend to have (some) color shift at low currents.
  - But newer LEDs have much less shift. Analog may be a good choice for most applications.
  - Exception: If you need a huge dimming range, may need to use both!

## **Dimming Problems**

- Flicker is the most common LED dimming problem. Line voltage goes to zero every 8.3msec, so unless you store energy, lights turn off every cycle.
  - Low dim is harder than moderate dimming.
- Have to use special techniques to prevent triac from turning off.
  - Easy technique: Throw away power when dimming.

#### For More Information





For your next lighting project: ron.lenk@reliabulb.com.