Assignment 2: To be submitted on Friday 21 March 2014 at the beginning of the class. You may do this in a couple with the same group personnel. Do this with your own font!

- 1. A multimode step index fiber has a relative refractive index difference of 1% and a core refractive index of 1.46. The maximum optical bandwidth that may contain with a particular source on a 4.5 km link is 3.1 MHz.
 - a) Determine the rms pulse broadening per kilometer resulting from intramodal dispersion mechanisms.
 - b) Assuming waveguide dispersion may be ignored, estimate the rms spectral width of the source used, if the material dispersion parameter for fiber at the operating wavelength is 90 ps nm⁻¹ km⁻¹.
- 2. a). An LED operating at 850 nm has a spectral width of 45 nm. What is the pulse spreading in ns/km due to the material dispersion? What is the pulse spreading when a laser diode having 2-nm spectral width is used?

b). Find the material-dispersion-induced pulse spreading at 1550 nm for an LED with a 75-nm spectral width.?

- 3. Compare the rms pulse broadening per kilometer for the following three fibers:
 - a) A multimode step-index fiber with core index $n_1 = 1.49$ and relative index difference $\Delta = 1\%$.
 - b) A graded index fiber having an optimum parabolic index profile and the same core index ($n_1 = 1.49$) dan relative index difference ($\Delta = 1\%$) as the step index fiber in a).
 - c) The same type of graded index fiber as in b) but with Δ = 0.5%.
- 4. Consider an optical link consisting of a 5-km long step-index fiber with the core index $n_1 = 1.49$ and relative index difference $\Delta = 1\%$.
 - a) Find the delay difference at the fiber and between the slowest and the fastest modes.
 - b) Find the rms pulse broadening caused by the intramodal dispersion
 - c) Calculate the maximum bit rate B_T that can be transmitted over the fiber without significant errors, which is given by $B_T = 0.2/\sigma_{step}$
 - d) Assuming the maximum bit rate equals the bandwidth, what is the bandwidth distance product of this fiber?
- 5. A multimode, optimum near parabolic profile graded index fiber has a material dispersion parameter of 30 ps nm⁻¹ km⁻¹ when used with a good LED source of rms spectral width 25 nm. The fiber has a numerical aperture of 0.4 and a core axis refractive of 1,48. Estimate the total rms pulse broadening per kilometer within the fiber assuming waveguide dispersion to be negligible.